skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Parkinson, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a systematic examination of the impact of frictions on optimal pandemic response, bridging the significant gap between policy recommendations and implementation. We focus in particular on constraints in testing delivery and in lockdown efficacy in the context of a canonical pandemic model. The latter is modified for a more faithful representation of lockdowns. The paper sheds light on nuanced, and sometimes counter‐intuitive, relationships. It rationalizes key but divergent findings in the literature on the extent of substitution and complementarity between lockdowns and testing. It also demonstrates remarkable robustness in lockdown policy to changes in its efficiency. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. In this paper, we use modified versions of the SIAR model for epidemics to propose two ways of understanding and quantifying the effect of non-compliance to non-pharmaceutical intervention measures on the spread of an infectious disease. The SIAR model distinguishes between symptomatic infected (I) and asymptomatic infected (A) populations. One modification, which is simpler, assumes a known proportion of the population does not comply with government mandates such as quarantining and social-distancing. In a more sophisticated approach, the modified model treats non-compliant behavior as a social contagion. We theoretically explore different scenarios such as the occurrence of multiple waves of infections. Local and asymptotic analyses for both models are also provided. 
    more » « less
  3. During the COVID-19 pandemic, conflicting opinions on physical distancing swept across social media, affecting both human behavior and the spread of COVID-19. Inspired by such phenomena, we construct a two-layer multiplex network for the coupled spread of a disease and conflicting opinions. We model each process as a contagion. On one layer, we consider the concurrent evolution of two opinions — pro-physical-distancing and anti-physical-distancing — that compete with each other and have mutual immunity to each other. The disease evolves on the other layer, and individuals are less likely (respectively, more likely) to become infected when they adopt the pro-physical-distancing (respectively, anti-physical-distancing) opinion. We develop approximations of mean-field type by generalizing monolayer pair approximations to multilayer networks; these approximations agree well with Monte Carlo simulations for a broad range of parameters and several network structures. Through numerical simulations, we illustrate the influence of opinion dynamics on the spread of the disease from complex interactions both between the two conflicting opinions and between the opinions and the disease. We find that lengthening the duration that individuals hold an opinion may help suppress disease transmission, and we demonstrate that increasing the cross-layer correlations or intra-layer correlations of node degrees may lead to fewer individuals becoming infected with the disease. 
    more » « less
  4. Abstract Deforestation is a major threat to global environmental wellness, with illegal logging as one of the major causes. Recently, there has been increased effort to model environmental crime, with the goal of assisting law enforcement agencies in deterring these activities. We present a continuous model for illegal logging applicable to arbitrary domains. We model the practice of criminals under influence of law enforcement agencies using tools from multiobjective optimal control theory and consider non-instantaneous logging events and load-dependent travel velocity. We calibrate our model using real deforestation data from the Brazilian rainforest and demonstrate the importance of geographically targeted patrol strategies. 
    more » « less